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Abstract 
To model  the  propagation  of  photon  noise theoretically  through  reconstruction algorithms 

using PET data  is important to evaluate the reconstructed  image quality as a  function of 

parameters of  the  algorithm. The linearization used to  model  theoretically  the  propagation  

fame  an  image  and  a  covariance  matrix  from one iteration  to  the  other using iterative ML-

EM (maximum-likelihood expectation maximization).  Our case analysis of MAP (maximum a 

posteriori)-EM algorithms analyzes the EM approach includes prior terms. The MAP-EM 

algorithm using an independent gamma prior is a special case. For this, we use a Monte Carlo 

process to justify our theory. The comparison of theoretical evaluations of mean and variance 

with sample approximations at each iteration shows that our theoretical analysis works well in 

real where the noise in the reconstructed images do not presume maximal values. 

Introduction 
The Maximum-A-posteriori (MAP) in anticipation of an increase in the emission computed 

tomography image reconstruction methods that help to solve basic circumstances. The important 

application of this method is to gain greater imaging consequences on diagnosis of a particular 

disease application. The three dimensional functional information of the patient due to the effect 

of any radiopharmaceutical is observed through the “Emission Computed Tomography (E.C.T) 

either Positron Emission Tomography (PET) or Single Positron Emission Tomography (SPECT). 

To study and measure the data of the patient’s body, a simple process is needed about which a 

comparable quantity of radionuclide, “Fluorine- 18 (F-18)” is injected into the subject that fit in 

the definite organ. The reconstructed images that are formed through the distribution of 

radionuclide around the body of a patient are assumed to be very useful in finding the volume of 

radionuclide in other organs of the patient [1, 2]. 
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 The pair of oppositely moving positrons emitting through the radionuclides such as    , used in 

PET travel through short distance before annihilation process. The event created through this pair 

is then detected through the line joining to the pair of detectors in any manner known as the line-

of-response (LOR) [1, 2]. The coincident event added in the list of detected events if it occurs at 

the same time approximate (12-20 ns). The collective line-of-responses (LORs) through different 

angles move along the radius to get the reconstructed image through different reconstruction 

algorithms [2, 3]. 

Image Reconstruction is an ill-posed problem 
The iteration based noise analysis using PET data, by making a comparison of ideal Shepp 

Logan Phantom through Maximum Likelihood Expectation Maximum (MLEM), the Maximum 

Likelihood Expectation through prior (MLEP/ PLEM) and Maximum-A- Posteririeo (MAP) 

tomographic reconstruction algorithms through “Gamma Root Prior” and will show that how 

average mean, theoretical mean and average variance and theoretical variance varies with 

iteration. The noise in the data with its incomplete nature makes the mathematical image 

reconstruction problem ill-posed and that is the reason of using priors because the prior 

knowledge will set the previous improper data to the proper. If we use iterative methods without 

regularization, they cannot compensate for ill-conditioning of the reconstruction problem, thus, 

produce reconstruction based noise and the only reason is that they use information is limited to 

the data only and hence, do not use any priori information about the object, however, most 

importantly, subject of their convergence and low frequency is superimposed by the high 

frequency noise if large number of iterations is used and make their resolution low, hence, that is 

the reason iterative methods with regularization is needed to improve the resolution of the 

reconstruction data better. 

Priors 

The ill-posed problems are solved through the reconstruction algorithm. The inversion methods 

are used to solve the inverse operator. The regularized image reconstruction MAP methods that 

are based on “Gamma Root Priors (GRPs)” have better resolution control with lower blurring 

nature and better convergence speed. The reconstruction algorithms are used for the study and 

reduction for the noise using different parameters through the specific data used. The “MLEM 

(Maximum Likelihood Estimation) algorithm” using priors measures the average and variance 
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image in accordance to each iteration. The MAP-EM (Maximum a Posteriori Estimation) 

algorithm incorporating the “Independent Gamma Prior”. We used a Monte Carlo (MC) 

methodology to validate our theoretical analysis to compare the estimation of mean and variance 

with ideal estimation. Through this comparison it would be shown that this theory works well 

practically and will also compare our noise propagation results through “Maximum Likelihood 

Expectation Maximization (MLEM)” and “Maximum Likelihood Expectation through prior 

(PLEM)”.  

Theoretical Data of PET Acquisition 
The data acquisition in tomography systems is assumed to be ideal.  Let          , be the 

estimated number of photons at any location       of the transverse pixel in the field of view 

(FOV).  Similarly “2-D projection” of    on detector bin is a function of      indicating object 

intensity radially at an angle    in “polar coordinates”; 

                          

                                                      ∬       
 

  
                      (1) 

Where g is a vector of emission data of N   1 vector. Such whole collection of all projections 

around the object {         [   ]        } is known as Radon Transform [28]. 

Theoretically, given the Poisson nature of emission process,      and this called direct 

inversion method because         and    is ill conditioned due to the noise in the 

projection, thus 

           (2) 

And                            

Since   is a sparse, thus iterative methods sound good to compute its inverse. 

Where the conditional mean of object dependent noise is; 

              [ | ]        | ]   [ | ]          

Where,     a matrix with all element is equals to zero. The covariance matrix of “R” is 

diagonal matrix with m
th

 diagonal element denoting the variance of   [  ] . Thus  

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 
ISSN 2229-5518 

1719

IJSER © 2016 
http://www.ijser.org

IJSER



4 
 

        |         |              

Where 

     |    [   | ], andconditional covariance matrix of X, the notation          is a 

diagonal matrix equal to the element of vector[  ] .  However, the following conventions are 

used for convenient; 

 The capital letters in the above equations denote the random vectors corresponding with 

their random variables 

 The small alphabetic letters, however, denote deterministic vectors with corresponding 

with their vector elements 

 The italic style letters denote matrices corresponding to their matrix elements. 

 While using convenient “Hadamard” notations [50], cd and c/d are vectors whose nth 

components are      and       

 Dot and matrix products are defines as    and   . 

ML-EM Algorithm 
The “Emission Computed Tomography” data can be written linearly as follows; 

                [    ]    

Here system matrix   and background noise r, are non-negative constants. If the background 

noise is neglected, thus any m
th

 projection ym may be represented with mean as; 

        ∑    
 
        (3) 

Where     be the mnth elements of the system matrix, thus with constant projection vector , 

likelihood function written as; 

                 |   =∏    
    

  

  

 
     (4) 

Recognizing that projections   consists of independent observations {          }, we seek 

that value  which maximizes  

    ∏      |           

MAP-EM algorithm 
The Bayes’ maximum a posteriori estimate (MAP), denoted  ̂ for the parameter set  , using 

Bayes’ rule 
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       |    
    |       

     
   (5) 

The probability density function      of object known as prior probability density. 

Here       being normalizing factor is assumed as constant. 

                |          

Whereas, a maximum-a-posteriori estimate of the unknown object after considering projection 

data and prior maximizes the probability density function 

     ̂         
 
 
    |       

     
   

In image reconstruction problems the prior information is valuable as data in case of noisy data 

or imperfect data but useless if data is complete. [12] 

Taking log of the MAP density function, dropping the denominator 

    ̂          (    | )            (6) 

 Placing derivative with respect to pixel   equal to zero to find iterative update equation 

     
     

  
       

Let;                                    (    | )          }        (7) 

The solution must satisfy the Kuhn-Tuckers optimally conditions of the problem 

  

   
        

     
  

   
         

Solving Z with respect to equation. (8), substituting it in 2
nd

 condition 

  {∑    
 
    ∑

  

     

 
       

 

   
        }             (8) 

Using “EM method”, maximizing equation. (6), is equaling iteratively maximizing a 

function   | ̂  , gives the previous estimate,  

    | ̂                                  
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Where,       is a     sensitivity vector equals to unity; 

By taking derivative of above relation “MAP-EM algorithm” is derived as 

  
    | ̂        

  
     

 ̂ 

 
 

         

  
     (9) 

In case of no prior, we left with solution   
 ̂ 

 
  and this leads to “ML-EM algorithm” 

    ̂           
 ̂ 

 
 

 ̂ 

 
{  [

 

  ̂ 
]}  (10)  

Green et al [13] suggested “One-Step-Late (OSL) algorithm” to use [49], thus rearranging 

equation we will get 

   ̂         
  
 

{∑    
 
    

 

   
        }

∑
  

 
 
       (11) 

               ; 

In vector notation can be written as 

 ̂         
 

  
 

   
        |

    

[
 

   
]                      

Theoretical Noise Propagation 
The theoretical noise propagation according to the “Barrett et al 1994” linearize the statistics of 

noise propagation in equation (13) and (20) including the effects of prior terms. The noise at 

iteration“k+1”is related to noise at previous iteration k, thus in iterative reconstruction algorithm 

we decompose each random vector by ignore the quadratic noise terms. The two “Taylor series” 

expansions are; 

    (     
 )               

  
 

  
)        

  
 

  
  (A) 

 (     
 )

  
 

 

  
(  

  
 

  
)
  

  
 

  
(  

  
 

  
)   (B) 

These approximations based on that |      |  |     |  
  
 

  
   . Here         is 

considered to be random detector measurement variable for which  is noisy projection. Where 

random vector          
 is decomposed into mean image or expectation     [  | ] 
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and   
  is noise terms or the deviation of     from its mean   where deviation has zero mean 

itself. 

MAP-EM with Independent Gamma Root Prior 
The probability density function (pdf) of gamma prior is defined as 

       ∏
 

     
 
  

  
⁄    

 

  
          

    
  

  

Where    is mean image,   
 
 

  is the variance co-efficient respectively. Taking log and 

derivative on both sides and dropping terms independent of , 

         

  
 

 

  
∑[

 

                  ]   
      

 
  

  
  
⁄   

Putting these values in equation. (9) and substituting  ̂  [
 

    
]    we get 

  ̂            
 ̂ 

  
  

  
⁄

[  [
 

   ̂ 
]  

      

 ̂ 
]                                          

Where  and   are       vectors with elements      and
   

  
⁄ .  

Taking log we can write above equation as 

     ̂        ̂       [
 

   ̂ 
]     [

 

 ̂ 
]               

We get solutions of first and 2
nd

 term of above equation from “median root prior” section and 

third term will be 

[
 

 ̂ 
]  [

 

       
 
]  

 

  
(    

 )  [
 

  
 
   

 

  
] 

Now combining solution of all three terms and the small quantity of quadratic terms that 

are  
 and R will be dropped  

          
            

     {  [
  

   
]  

 

  
   [

 

   
]     

   
 

  
} 

Using Taylor series expansion (A) to yield 
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     {  [

  

   
]}  

 

  
 
  [

 

   
]    [

[  ][      
  ]

[   ]
]   

   
 

  

  [
  

   
]  

 

  

 

Inserting the above solution in equation no. (15) 

         
     {

   [
  

   
]  

 

  

     
}  

  [
 

   
]    [

[ ][      
  ]

[   ]
]  

   
 

  

  
 

  

 

Now by equating random and non-random terms, we get 

                  {
   [

  

   
]  

 

  

     
}                                           

  
      

  
  [

 

   
]    [

      
  

[   ]
]  

   
 

  

  
 

  

                                  

Here equation (16) predicts through running noise free “MAP-EM algorithm”, the ensemble 

mean reconstruction   with “kth” iteration can be calculated on phantom    . 

Equation (17) estimates the iteration k for noise in the log of reconstruction,   

                                                            
    (23) 

 

    
   

  [
      

  

[   ]
]

  
 

  

 

     
  [

 

   
]

  
 

  

 

    
   

   
 

  
 

  

 

And we can write these matrices explicitly 
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)      (
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       (
 

  
 

  

) 

Experiment 
For a 64   64 “Shepp Logan phantom”, we use two different count levels that are low counts 

80,000 and high counts 500,000 counts, theoretically adding the Poisson noise. The noise free 

and noisy data then compared relatively. 

The sample “mean” of the L reconstructions at ith pixel, denoted as    
  ; 

  
  = 

 

 
∑   

    
    for i = 1… N, 

Where the subscripts k and L denote the iteration number and the sample number respectively 

and   
   

 is the object estimate at ith pixel at iteration k. The variance of the reconstruction 

between two different pixels ith and jth denoted as [  
 ]ij; 

[  
 ]ij = 

 

   
∑ (  

       
 ) 

   (  
      

 ) for i, j = 1,…, N. 

Results and Discussions 
For the “MAP-EM” using Independent Gamma Root Prior, we used a Shepp Logan phantom at 

80,000 counts,   16 and 500,000 counts,    30, whereas,    is the weight of the pixel. The 

average is taken within the “disk of region (ROI)”. For independent gamma prior, the “ROI” 

here is the disk itself. The description of general theoretical formula estimates the variance (  ) 

of reconstruction. This is performed mathematically depending on the low and high counts 

statistically corresponding to their respective variances. 
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Figure 1: Average and theoretical mean corresponding to their profiles at each iteration (10, 30, 50, 100, and 200) using PLEM 
and MAP-EM algorithm through GRP at 80,000 projection counts, α = 16, q = 15 and β = value of the phantom. 

The “Monte Carlo” and theoretical mean images of total 500 noisy reconstructions at different 

iterations such as 10,30, 50, 100 and 200 are shown in figure (1) whereas, the total projection 

counts are 80,000 counts. The top left corner of the figure (1) shows the noisy mean images of 

500 noisy images at 80,000 total projection counts reconstructed through nonlinear “Penalized 

Maximum-Likelihood Expectation Maximization (PLEM)” algorithm using “Gamma Root Prior 

(GRP)” for iterations equal to “10, 30, 50, 100 and 200”respectively, whereas, the middle portion 

presents the theoretical mean images at” 80,000 total projection counts” for iteration numbers 10, 

30, 50, 100 and 200 running through “linear Maximum-a-Posteriori-Expectation Maximization 

(MAP-EM) algorithm”using          , “β = value of the phantom” corresponding with 

their respective profiles. Here we checked the “Monte-Carlo (MC)” simulations with 80,000 

counts that is the mean are dependent at each iteration 10, 30, 50, 100 and 200. Figure 1 show 

the excellent agreement of profiles of mean images through the lesion center at 80,000 projection 

counts at different iterations 10, 30, 50, 100 and 200 respectively for MC and theory. However, it 

is to be noted that for a linear reconstruction algorithm, the noise-free reconstruction and 

ensemble mean reconstruction are exactly equal. This equality is very well defined through the 

fact that is well approximated by the nonlinear MAP-EM is gratifying. 
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Figure 2: Average and theoretical mean corresponding to their profiles at each iteration (10, 30, 50, 100, and 200) using 
nonlinear PLEM and linear MAP-EM algorithm through GRP at 500,000 projection counts, α=30, q =29 and β = value of the 
phantom. 

The Monte Carlo and theoretical mean images of total 500 noisy reconstructions at iterations 

10,30, 50, 100 and 200 are shown in figure (2) whereas, projection counts are used as 500,000 

counts. The top left corner of the figure (2) shows the noisy mean images of 500 noisy images at 

500,000 total projection counts reconstructed through nonlinear PLEM (Penalized Maximum-

Likelihood Expectation Maximization) algorithm using Gamma Root Prior (GRP) for iterations 

equal to 10, 30, 50, 100 and 200 respectively, whereas, the middle portion presents the 

theoretical mean images at 500,000 total projection counts for iteration numbers 10, 30, 50, 100 

and 200 running through linear MAP-EM algorithm using          , β = value of the 

phantom corresponding with their respective profiles. Here we checked the Monte-Carlo (MC) 

validation with 500,000 noise realizations, however, for each experiment, the results of mean are 

very consistent at iterations 10, 30, 50, 100 and 200 for both MC simulation and theoretical 

analysis. Figure 2 shows the excellent agreement of profiles of mean images through the lesion 

center at 500,000 projection counts at different iterations 10, 30, 50, 100 and 200 respectively for 

MC and theory.  
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Figure 3: Average and theoretical variance corresponding to their profiles at each iteration (10, 30, 50, 100, and 200) using 
nonlinear PLEM and linear MAP-EM algorithm using GRP at 80,000 projection counts, α=16, q=15 and β =value of the phantom. 

The “Monte Carlo” variance images of total 500 noisy images for iteration number equal to 

10,30, 50, 100 and 200 are shown in figure (3) whereas, the total projection counts for this case 
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were 80,000 counts. The top left corner of the figure (3) shows the noisy mean images of 500 

noisy images at 80,000 total projection counts reconstructed through” nonlinear PLEM” 

algorithm using “GRP” for iterations equal to 10, 30, 50, 100 and 200 respectively, whereas, the 

middle portion presents the theoretical variance images at 80,000 total projection counts for 

iteration numbers 10, 30, 50, 100 and 200 running through “linear MAP-EM” algorithm for 

“Gamma Root Prior (GRP)”using          , β = value of the phantom corresponding with 

their respective profiles at through the image center. However, the variation of noise at the edges 

as shown in figure 3 shows the difference in non-linear PLEM and linear MAP-EM algorithms, 

as “PLEM algorithm” is nonlinear; hence the variation at the edges is very large as compared to 

the linear “MAP-EM” algorithm. Moreover, at lower iteration, the variance resembles like the 

phantom but as there will be the variation in iteration, there will be the increment in the noise 

behavior shown in figure. Through variance, the edge preserving results are explained gracefully 

through iterative methods,  however, variance plots for this case as shown in figure 3 for 80,000 

total projection counts.  

  

 

  

 

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 
ISSN 2229-5518 

1731

IJSER © 2016 
http://www.ijser.org

IJSER



16 
 

  

 

  

 

  

 
Figure 4: Average and theoretical variance corresponding to their profiles at each iteration (10, 30, 50, 100, and 200) using 
nonlinear PLEM and linear MAP-EM algorithm using GRP at 500,000 projection counts, α=30, q=29 and β=value of the phantom. 

The “Monte Carlo” variance images of total 500 noisy images at iterations 10,30, 50, 100 and 

200 are shown in figure (4) whereas, the projection counts are 500,000 counts. The top left 

corner of the figure (4) shows the mean images of 500 noisy images at 500,000 total projection 

counts reconstructed through “PLEMGRP” at each iteration, whereas, the middle portion 

presents the theoretical variance images at 500,000 projection counts for each iteration through 

MAP-EM-GRP using          , β indicates the pixel weight corresponding with their 

respective profiles at through the image center. However, the variation of noise at the edges as 

shown in figure 4 shows the difference in “PLEM” and “ MAP-EM” algorithms, as “PLEM 

algorithm is nonlinear; hence the variation at the edges is very large as compared to the linear 
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MAP-EM algorithm”. Moreover, the lower iteration, the variance behaves like the phantom, 

whereas, variance in iteration comparatively increase of noise in the reconstruction. The variance 

image is smeared leading to the noiseless images as shown in the middle portion of figure 4. The 

increment in neighborhoods will smoothed the noise variations increase and finally smoothed out 

the large shown in figure 4. The variance is explained better through the linear algorithm rather 

than non-linear. The comparison of variance plots for this case as shown in figure 5 for 500,000 

projection counts  

Table 1: Monte-Carlo and Theoretical estimates of mean and variance at each iteration (10, 30, 50, 100, 200) using PLEM-GRP 
algorithm, α = 16, q=15, β = value of the phantom, at 80,000 projection counts. 

iter MC .mean Th.mean MC.variance Th.variance 
10 147.3827 147.5703 1.1506 0.9909 

30 148.3736 148.5211 2.2866 2.0035 

50 148.1938 149.0270 2.4968 2.1605 

100 148.0590 148.7470 2.5577 2.1553 

200 148.0353 149.8157 2.5596 2.2066 
Table 2: Monte-Carlo and Theoretical estimates of mean and variance at each iteration (10, 30, 50, 100, 200) using PLEM-GRP 
algorithm, α = 30, q=29, β = value of the phantom, at 500,000 projection counts. 

iter MC .mean Th.mean MC.variance Th.variance 
10 296.4945 297.1547 0.6680 1.1481 

30 314.1501 313.3849 3.3005 2.8158 

50 316.6665 316.4774 5.1778 3.2299 

100 316.9292 319.0601 6.9149 3.4288 

200 316.7447 314.6408 7.2430 3.2421 

 

The above Table 1 and Table 2 show typical results for our experiment done for “nonlinear 

PLEM and linear MAP-EM algorithms using Gamma Root Prior (GRP)” through 80,000 and 

500,000 projection counts with different parameters respectively. Table 1, as shown above, gives 

the analysis of MC-theory experiment for low projection counts i.e. 80,000 total projection 

counts using “PLEM and MAP-EM algorithms using GRP” with parameters            

                     . However, as we can see from the tables, the “(MAP-EM)-GRP” 

performs well for both 80,000 (low projection) counts and 500,000 (high projection) counts. 

Table 2, as shown above, gives the analysis of MC-theory experiment for high projection counts 

i.e. 500,000 total projection counts using “MAP-EM” algorithm using GRP with parameters   

                             . It is seen from the above tables that on the average, the 

higher counts that exhibit high signal-noise ratio perform better and gives us the good results 

than low projection counts with low signal to noise ratio. However, the results that are shown in 
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Table 1 and Table 2 for MC-theory mean and variance are dependent at each iteration for 

“Monte-Carlo (MC)” simulations. 

Conclusions and Discussion 
The numerical assessment of theoretical statistical attributes of the noise in an expectation-

maximization reconstruction is evaluated through theoretical formula. The theoretical average 

image was elaborated through the ideal image at the kth iteration. The iteration number increases 

linearly through the centroid of the elaboration. The large wavering might be vitiated that 

expansion instead the final reconstructed maximum likelihood image. When the iteration are 

greater enough, there will be low projection counts that would occur the errors. 

 However, the noise is largest, the projections of the reconstructed image look ideally but just for 

few iterations. The algebraic form of the equations is considered to be the simplification of the 

estimated object. The analysis gives the results for the mean and variance as a function of the 

target, iteration number and system matrix. The square of theoretical mean is comparable to the 

variance at the point that makes the noise more local. 

 The low noise is relative to the low intensity images. The variance dependency on mean is not 

quadratic. The trends of variance and covariance of noise and iteration are observed linearly and 

recapitulated through the theory. The theoretical noise analysis through “MAP-EM” recapitulate 

the application of two different noise levels on the “Shepp-Logan phantom”. However, to 

compute the “covariance   | 
 ”, an important evaluation must be done through the theory. 

The derivation of the theoretical formula is validated to apply the study of noise propagation 

through iterations in this thesis. The quadratic prior’s plays an important role in reducing the 

noise in topical neighborhoods. The mean image that runs algorithm on the noise free data is 

traced by the theory. The imprecise solution is calculated through simulations. The forms for 

            without approximation would be disorder,    is logical, however, the unrealistic 

bias to be introduced for the breakdown. 
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